Pascale Cossart

Pascale Cossart

Pascale Cossart during the conference
Fields bacteriology
Institutions Pasteur Institute
Alma mater Lille University, Georgetown University, University of Paris

Pascale Cossart (1948 - ) is an award-winning bacteriologist at the Pasteur Institute of Paris, and the foremost authority on Listeria monocytogenes, a deadly and common food-borne pathogen responsible for encephalitis, meningitis, bacteremia, gastroenteritis, and other diseases.

Contents

Biography

Cossart earned a B.S. and M.S. from Lille University in 1968, and an M.S. in chemistry from Georgetown University in 1971. She earned her Ph.D. in biochemistry at the University of Paris in 1977 (University Paris Diderot). She completed her postdoctoral fellowship at the Pasteur Institute. She is currently a Professor and Head of the Unité des Interactions Bactéries Cellules at the Pasteur Institute.[1]In 1998, she received the Richard Lounsberry Prize and the L'Oreal/UNESCO Award for Women in Science.[2]

Works

Cossart's studies of the infectious agent Listeria monocytogenes have helped develop a complete picture of this organism and its approaches, offering hope not just for resolving Listeria infection, but also shedding light on bacterial infections generally.

Listeria is a food-borne bacterial pathogen responsible for numerous illnesses and a mortality rate of 30%. The bacteria is one of the best models of intracellular parasitism because it is particularly hardy, able to survive in a variety of cells, cross multiple host barriers, and spreads through actin-based motility. Cossart's work has shed light on the genetic and biochemical processes that make Listeria so effective and lethal, identifying the bsh gene; regulatory mechanisms such as an RNA thermosensor that control expression of the virulence genes such as bsh; and the ways in which Listeria enters cells and crosses physiological barriers such as the blood-brain barrier, the intestinal barrier, and the placental barrier. The discovery by Cossart's lab of the interaction between L. monocytogenes' protein, internalin, and its cell receptor, E-cadherin, was the first such study that successfully demonstrated the molecular mechanism that permits a bacterial agent to cross the placental barrier.

In 2009 Cossart published what she describes as the first "bacterial operon map" -- the transcriptional program that regulates Listeria's behavior in different environmental conditions.[3] By comparing the sequences of Listeria drawn from soil and drawn from the human gut, Cossart identified non-coding RNAs that contribute to Listeria's virulence, identified additional RNA repressors, and determined that riboswitches can act both downstream and upstream.

As part of her work she has also developed important biological tools, including a transgenic mouse that was the first animal model to overcome bacterial species-specificity. The mouse carried a human version of a host cell membrane receptor that L. monocytogenes used to enter cells.

Significant Publications

Awards, Prizes, and Honorary Lectures

References